2025-11-26 16:33 IT产业网
随着大语言模型在文本分析、智能问答等场景的广泛应用,处理1M超长文本推理时,常常面临显存不足、运算速度卡顿的行业痛点,严重限制了超长文本场景的应用。近日,上海交通大学李健教授团队依托上海交通大学 鲲鹏 腾科教创新卓越中心的算力支持,基于vLLM-Ascend 推理框架研发出一套针对超长上下文推理的稀疏注意力 KV Cache 分层缓存管理系统。在 腾 AI 软硬件平台的全方位赋能下,该项目成功破解单卡支持超长上下文推理的显存与性能双重难题,同时大幅提升吞吐量。